On the Value of Sampling and Pruning for Search-Based Software Engineering PhD Defense

Jianfeng Chen

Timothy Menzies(Advisor) Min Chi Emerson Murphy-hill Xipeng Shen (GSR)

Department of Computer Science North Carolina State University

May 9, 2019

Find this slides at http://tiny.cc/jcdefense

Dissertation Statement

For the optimization of search-based software engineering (SBSE) problems,

- given a proper configuration selector or comparator built upon decision space,
- oversampling-and-pruning (OSAP) is better than a standard mutation based evolutionary approach (EVOL);
- where "better" is measured in terms of runtimes, number of evaluations and value of final results.

Major content in this talk: Four generations of configuration selector/comparator, i.e. OSAP1, OSAP2,...

Dissertation Statement Publications Previous feedback & contents of this talk SBSE Motivation

Publications List

- [ASE Submitted] Jianfeng Chen and Tim Menzies. "On the Benefits of Restrained Mutation: Faster Generation of Smaller Test Suites" Submitted to IEEE/ACM International Conference on Automated Software Engineering (ASE 2019).
- [TSE'18] Jianfeng Chen, Vivek Nair, Rahul Krishna, and Tim Menzies. ""Sampling" as a Baseline Optimizer for Search-based Software Engineering." IEEE Transactions on Software Engineering (2018).
- [IEEE CLOUD'18] Jianfeng Chen, and Tim Menzies.
 "RIOT: A Stochastic-Based Method for Workflow Scheduling in the Cloud." 2018 IEEE 11th International Conference on Cloud Computing.
- [IST'17] Jianfeng Chen, Vivek Nair, and Tim Menzies. "Beyond evolutionary algorithms for search-based software engineering." Information and Software Technology (2017).

 [FSE Submitted] Jianfeng Chen, Joymallya Chakraborty, Philip Clark, Kevin Haverlock, Snehit Cherian and Tim Menzies. "Predicting Breakdowns in Cloud Services (with SPIKE)". Submitted to ESEC/FSE 2019 - Industry Paper Track

- [TSE'19] Junjie Wang, *et al.*. "Characterizing Crowds to Better Optimize Worker Recommendation in Crowdsourced Testing ". IEEE Transactions on Software Engineering(2019).
- [EMSE'18] Tianpei Xia, et al.. "Hyperparameter optimization for effort estimation." Empirical Software Engineering (EMSE), 2018
- [MSR'18] Vivek Nair, et al.. "Data-Driven Search-based Software Engineering." The Mining Software Repositories (MSR) 2018.
- [SSBSE'16] Vivek Nair, et al.. "An (accidental) exploration of alternatives to evolutionary algorithms for sbse." In International Symposium on SBSE, 2016.

* Covered in this talk.

Impact on SE community

- 21 citations per year since 2017, according to the google scholar
- Extended by other researchers in software effort estimation.¹
- Similar insights for space reduction in solving probabilistic constrained simulation optimization problems.[Horng'18]²
- and so on

¹Sarro, Federica et al."Linear programming as a baseline for software effort estimation." ACM transactions on software engineering and methodology (TOSEM) 2018 ²Horng, Shih-Cheng, and Shieh-Shing Lin. Embedding Ordinal Optimization into Tree-Seed Algorithm for Solving the Probabilistic Constrained Simulation Optimization Problems. Applied Sciences 8.11 (2018)

Dissertation Statement Publications Previous feedback & contents of this talk SBSE Motivation

Feedback from the Oral Prelim Exam

- To answer: why does oversampling work
- When to use oversampling. Difference among developed methods
- To revisit: previous problem + improved method
- To explore: the testing problem
- Identify specific propriety in software engineering models

This talk ...

- review previous developed algorithms; analysis on their achievements and limitations
- latest oversampling technique
- revisit the old model and
- explore the testing problem.

Dissertation Statement Publications Previous feedback & contents of this talk SBSE Motivation

Contents of this talk

Overview

- What is SBSE?
- Motivation of this research

Early generations of OSAP

- OSAP1, OSAP2, OSAP3
- Achievements and Limitations ← Why did they work/not work?

Delta-oriented surrogate model embedded OSAP

- OSAP4 ← addressing previous limitations
- Revisiting XOMO & POM3 model ← old problems first
- Test suite generation ← a more challenging problem
- Critics on OSAP4

Conclusion and future work

Dissertation Statement Publications Previous feedback & contents of this talk SBSE Motivation

Modeling SE problems

- (Requirement) What feature to include or develop in the project
- (Deployment) How to assign software to cloud environment
- (Test) How to find smaller set of test suite, converging more code

Search-based Software Engineering

- Modeling
- Decision space, objective space
- Search for optimal objective/goal within decision space

Dissertation Statement Publications Previous feedback & contents of this talk SBSE Motivation

Search-based Software Engineering (SBSE)

Dominance

p dominance q if and only if

- \blacksquare For every objective, p is no worse than q AND
- Exists at least one objective, p is better than q.

Dissertation Statement Publications Previous feedback & contents of this talk SBSE Motivation

Existing Research

 $^{^{3}}$ [zhang18] A repository and analysis of authors and research articles on search-based Software Engineering.

Dissertation Statement Publications Previous feedback & contents of this talk SBSE Motivation

How does Evolutionary algorithms (EVOL) work?

Figure: Framework⁴ of the EVOL algorihtms.

⁴ Doncieux, Stephane, et al. "The ROBUR project: towards an autonomous flapping-wing animat." Proceedings of the Journes MicroDrones, Toulouse (2004).

Previous feedback & contents of this talk Motivation

Is EVOL good enough?

- [©] EVOL Treats the problem as black-box
- [©] EVOL Easy to deploy to new problem
- ⁽²⁾ Evaluates 1000s, 1,000,000s of configurations
 - Airspace operation model verification 7 days [Krall'14] ⁵
 Test suite generation weeks [Yoo'12] ⁶

 - Software clone evaluation at pc 15 years [Wang'13] ⁷

Need a faster framework!

- Economic considerations save computing resources
- Faster response to the environment changes
- As a baseline method judge the problem before exploration
- Opens up a new research direction

⁵ Krall, Joseph. Tim Menzies, and Misty Davies, "Learning the task management space of an aircraft approach model." (2014).

⁶Yoo. Shin. and Mark Harman. "Regression testing minimization, selection and prioritization: a survey." Software Testing, Verification and Reliability

⁷Wang, Tiantian, et al. "Searching for better configurations: a rigorous approach to clone evaluation." Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ACM, 2013.

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18] OSAP3 - The linear surrogate model [Cloud'18]

Roadmap

2 Early generations of OSAP

- OSAP1 Utilizing "golden" region assumption [SSBSE'16, IST'17]
- OSAP2 Utilizing the expert or domain knowledge [TSE'18]
- OSAP3 The linear surrogate model [Cloud'18]

Delta-oriented surrogate model embedded OSAP

4 Conclusion and future work

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18] OSAP3 - The linear surrogate model [Cloud'18]

OSAP1 - "Golden" region assumption

Assumption: A small region in the decision space covers the majority of the near-optimal configurations.

Question: How to figure out such region? ⇒ Similar decisions implies similar objectives

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18] OSAP3 - The linear surrogate model [Cloud'18]

WHERE Geometric Learner

- step 1: get a random configuration, e.g. P
- **•** step 2: find furthest point to P, as E
- **•** step 3: find furthest point to E, as W
- **•** step 4: connect EW. find medium line (hyperplane)
- **•** step 5: compare E and W, select the half-space
- Recursively execute 1 5

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18] OSAP3 - The linear surrogate model [Cloud'18]

WHERE Geometric Learner

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] **OSAP2 - Utilizing the expert or domain knowledge [TSE'18]** OSAP3 - The linear surrogate model [Cloud'18]

OSAP2 - Just one "golden" region?

No!

Improvement from OSAP1

OSAP2: utilize the domain or expert knowledge to get the rough sub-space.

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] **OSAP2 - Utilizing the expert or domain knowledge [TSE'18]** OSAP3 - The linear surrogate model [Cloud'18]

OSAP2 - Divide with domain knowledge, and conquer

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] **OSAP2 - Utilizing the expert or domain knowledge [TSE'18]** OSAP3 - The linear surrogate model [Cloud'18]

Comments

Achievements of OSAP1

- Oversampling can outperform the mutation based EVOL under some circumstances
- An effective geometric learner

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] **OSAP2 - Utilizing the expert or domain knowledge [TSE'18]** OSAP3 - The linear surrogate model [Cloud'18]

Comments

Achievements of OSAP2

- Fixed OSAP1 via doing the decision space partition first, using the domain or expert knowledge
- Tested in two constrainted case studies

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] **OSAP2 - Utilizing the expert or domain knowledge [TSE'18]** OSAP3 - The linear surrogate model [Cloud'18]

Comments

Limitations of OSAP1

- Majority of optimal solutions can be found in one small region
- Similar decisions implies similar objectives

Limitations of OSAP2

- Majority of optimal solutions can be found in <u>several</u> small regions
- Similar decisions implies similar objectives
- Requires the domain or expert knowledge

OSAP3 - Surrogate model

- ☺ Just figure out one (or more) region in the decision space is not enough
- Expecting: given any configurations, determine which one is better/best
- Surrogate model: an alternative model to replace the original SE model.
- Simple. fast.
- Estimating the objective is the most directed way
- If SE model has ≥ 2 objectives, build ≥ 2 surrogate models. (one surrogate for each objective)

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18] OSAP3 - The linear surrogate model [Cloud'18]

OSAP3 - Linear surrogate model

OSAP3 - Utilizing the linear surrogate model

- Need a few ≈ 100 evaluated configurations (anchors)
- Three ways to assign the anchors: 1) random , 2) diagonal, 3) 1+2
- Given evaluated anchors, estimate over 10,000 other configurations via surrogate models.
- \blacksquare How to select the p and q? Nearest and furthest anchors
- 1 Anchors $\leftarrow n$ evaluated items;
- 2 Randoms $\leftarrow N \gg n$ un-evaluated items;
- 3 foreach $c \in Randoms$ do
- 4 $A_n \leftarrow \text{configurations in Anchors that nearest to } c;$
- 5 $A_f \leftarrow \text{configurations in Anchors that furthest to } c;$
- 6 foreach $o \in \{o_1, o_2, ...\}$ do
 - Accessing o_c using surrogate model;
- 8 Collect all items and return all frontiers;

7

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18] OSAP3 - The linear surrogate model [Cloud'18]

Recap

Achievements of OSAP3

- Replacing previous geometric learners by surrogate model
- Given a small number of configurations evaluated, any configurations' objectives can get estimated
- Successfully found the deployment plan for complex workflows

OSAP1 - Utilizing "golden" region assumption [SSBSE'16, IST'17] OSAP2 - Utilizing the expert or domain knowledge [TSE'18] OSAP3 - The linear surrogate model [Cloud'18]

Recap

Limitations of OSAP3

OSAP3 is highly replied on the linear surrogate model.

What if the SE does not have linearity kernel, or the linearity inside is weak?

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Roadmap

Early generations of OSAP

- Oelta-oriented surrogate model embedded OSAP
 - OSAP4 Delta-oriented surrogate model [ASE'19*]
 - Case study I: revisit XOMO & POM3
 - Case study II: test suite generation
 - Summary of OSAP4

4 Conclusion and future work

On the surrogate model...

- Ultimate purpose of the surrogate model is to compare or select the better configurations.
- The OSAP3 surrogate model was design to predict the objectives precisely
- Having the objectives, we can do comparisons
- For the purpose of configuration comparisons, is "predicting the objectives" a must?

Delta-oriented surrogate model

- Given any two configurations p, q, predict $[\Delta O]_{pq}$, i.e. $(O_p O_q)$.
- Predict the $[\Delta O]_{pq}$ from $[\Delta D]_{pq}$ (again, one predictor for each objective)
- $[\Delta O]_{pq}$ need not be precise. Correct sign is good enough. $(O_p <_? O_q)$

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Delta-oriented surrogate model

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Delta-oriented surrogate model

- Each chart is a actual
 [ΔO] vs. predicted [ΔO]
- Quadrant I, III : FILLED
- Quadrant II, IV: EMPTY

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Delta-oriented surrogate model

Framework of OSAP4

- 1 Samples \leftarrow (n = 100) evaluated items;
- 2 $PF \leftarrow$ pareto frontier in Samples;
- 3 foreach $x \in PF$ do
- 4 Neighbors \leftarrow Configurations near x in decision space;
- 5 get all $[\Delta D]_{pq}$ and $[\Delta O]_{pq}^{i}$ (i = 1, 2, ...), where pq are pairs in *Neighbors*;
- 6 train KNN model to predict $[\Delta O]_{pq}^i$ from $[\Delta D]_{pq}$ (i=1,2,...#of objs);
- 7 $y \leftarrow$ random configuration;
- 8 predict $[\Delta O]_{xy}^i$ given $[\Delta D]_{xy}$;
- 9 If exists *i* such that $([\Delta O]_{xy}^i \ll 0)$, evaluate *y* using model;
- 10 repeat Line 7-9, or Goto 3;
- 11 Collect all new evaluated configurations, update Samples;
- 12 Goto 2 or Terminate;
- 13 Return all pareto frontiers achieved;

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Roadmap

Early generations of OSAF

Oelta-oriented surrogate model embedded OSAP

- OSAP4 Delta-oriented surrogate model [ASE'19*]
- Case study I: revisit XOMO & POM3
- Case study II: test suite generation
- Summary of OSAP4

Conclusion and future work

-

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Case study I: revisit XOMO and POM3

Objectives for the XOMO:

- Reduce risk;
- Reduce effort;
- Reduce defects;
- Reduce develop times.

Table: Descriptions of the XOMO decisions.

scale factors (exponentially decrease effort)	prec: have we done this before? flex: development flexibility resl: any risk resolution activities? team: team cohesion pmat: process maturity
upper	acap: analyst capability
(linearly decrease	pcap: programmer capability
effort)	pcon: programmer continuity
	aexp: analyst experience
	pexp: programmer experience
	Itex: language and tool experience
	:
lower	rely: required reliability
(linearly increase	data: 2nd memory requirements
effort)	cplx: program complexity
	ruse: software reuse
	docu: documentation requirements
	:
	stor: main memory requirements
	pvol: platform volatility

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Case study I: revisit XOMO and POM3

Objectives for the POM3:

- Increase completion rates,
- Reduce idle rates,
- Reduce overall cost.

Decision	Description
Culture	Number (%) of requirements that change.
Criticality	Requirements cost effect for safety critical systems.
Criticality Modifier	Number of (%) teams affected by criticality.
Initial Known	Number of (%) initially known requirements.
Inter-Dependency	Number of (%) requirements that have interdependencies
	to other teams.
Dynamism	Rate of how often new requirements are made.
Size	Number of base requirements in the project.
Plan	Prioritization Strategy: $0 = \text{Cost Ascending}$; $1 = \text{Cost De-}$
	scending; $2=$ Value Ascending; $3=$ Value Descending;
	$4 = \frac{Cost}{Value}$ Ascending.
Team Size	Number of personnel in each team

Table: List of POM3 decisions.

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

XOMO and POM3

Benchmark scenarios

- XOMO-OSP : NASA flight guidance system
- XOMO-OSP2: Another NASA flight guidance system
- XOMO-Flight: NASA JPL general flight system
- XOMO-Ground: NASA JPL general ground system
- POM3a: A broad space of project
- POM3b: Critical small project
- POM3c: Highly dynamic large projects

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Comparing the effectiveness

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Comparing the effectiveness (EVOL vs. OSAPs)

- Hypervolume: How large the area the obtained PF can covered?
- General Spread: Can PF provide enough choices to the users?
- Generated distance: How close the obtained PF to the theoretically-PF?

Observations

- In majority cases, OSAP4 is same or better than EVOL methods;
- OSAP1 is no good enough. Look back the digits, it was worse than EVOL by 27% on average.
- OSAP1 conclusion not consistent with previous? Following an updated HV/GS/GD calculation guidance ^a

^aLi, Miqing et al. "A Critical Review of" A Practical Guide to Select Quality Indicators for Assessing Pareto-Based Search Algorithms in Search-Based Software Engineering" 2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Comparing the effectiveness (EVOL vs. BF)

	Hypervolume	General Spread	Generated Distance
model	BF better?	BF better?	BF better?
osp	•	•	•
osp2	•	•	•
ground	•	•	•
flight	•	•	•
pom3a	•	•	•
pom3b	•	•	•
pom3c	•	•	•
better+same	6/7	6/7	5/7

- Hypervolume: How large the area the obtained PF can covered?
- General Spread: Can PF provide enough choices to the users?
- Generated distance: How close the obtained PF to the theoretically-PF?

Observations

- BF is good enough in majority cases
- If time permits, randomly selecting and evaluating large amount of candidates is a good strategy. Simple! Effective!
- Is the crossover, mutation in evolutionary algorithms really helpful in SBSE?

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Comparing the efficiency (EVOL vs. OSAPs)

- 4 color bars, left to right: BF, EVOL, OSAP1, OSAP4
- Column 1-4: time@XOMOs, eval@XOMOs, time@POM3s, eval@POM3s
- OSAP1 is always extremely fast.
- OSAP4 is frugal.

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 **Case study II: test suite generation** Summary of OSAP4

Roadmap

Early generations of OSAP

Oelta-oriented surrogate model embedded OSAP

- OSAP4 Delta-oriented surrogate model [ASE'19*]
- Case study I: revisit XOMO & POM3
- Case study II: test suite generation
- Summary of OSAP4

Conclusion and future work

Case study II: test suite generation

Get diverse solutions(models) to a 3-SAT problems could be helpful to in software testing.

```
1 int mid(int x, int y, int z) {
  if (x < y) {
2
3
     if (y < z) return y;
     else if (x < z) return z;
4
5
     else return x:
  } else if (x < z) return x:
6
7
   else if (v < z) return z:
  else return v;
8
9
 }
```

```
■ path 1: [C1: x < y < z] L2->L3
```

■ path 2: [C2: x < z < y] L2->L3->L4

path 3...

• $\vee C_i$ (Disjunction form, meet any of formula)

OSAP4 - Delta-oriented surrogate model [ASE'19*]

Case study I: revisit XOMO & POM3

Case study II: test suite generation Summary of OSAP4

- $\blacksquare \Rightarrow \land C'_j \text{ (Conjunction form, meet all formulas)}$
- Model checking tools transform a program to CNF (conjunctive normal form)
- A valid assignment to $CNF \leftrightarrow$ a test case
- A test suite with enough diverse ← figure out enough amount of valid solutions meet the CNF
- NP-Complete Easy to verify, hard to solve
- Decision space: $2^{v}(v = \# \text{ of variables}) \rightarrow \underline{\text{valid}}$ configurations
- Objective space: not really interesting. Enough valid solution to guarantee diversity is more important.

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Test suite generation::state-of-the-art⁸

Efficient Sampling of SAT Solutions for Testing

- Introduced by Dutra et al. in ICSE 2018
- Open sourced. Compared to former STOA
- Assert to be better than old STOA
- To achieve diversity, generates huge amount samples (> 2 millions)
- New samples fetched from crossover, or some mutations ~ EVOL
- Limitations:
 - long execution time ≈ 3 hrs
 - samples are not verified. (may be invalid)
 - too many samples. Hard to test all suite

⁸Dutra, Rafael, et al. "Efficient sampling of SAT solutions for testing." 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE, 2018.

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 **Case study II: test suite generation** Summary of OSAP4

Test suite generation::adapting OSAP4

- 1. Samples \leftarrow (n = 100) evaluated items
- 2. *PF* ← pareto frontier in *Samples*
- 3. foreach $x \in \mathsf{PF}$
 - 3.1 *Neighbors* \leftarrow Configurations near x in decision space
 - 3.2 train delta-oriented surrogate model
 - 3.3 $y \leftarrow$ random configuration
 - 3.4 predict $[\Delta O]^{xy}$
 - 3.5 if desired, evaluate y
 - 3.6 repeat from 3.3, or Goto 3
- 4. Collect all new evaluated configurations, update *Samples*
- 5. Goto 2 or Terminate
- 6. Return all pareto frontiers achieved

- No PF here: k-means. centers of cluster
- $\Delta D = p \oplus q$, exclusive-or
- Local neighbors? To improve diversity, use global pairwise delta from samples
- Predict ΔO via $\Delta D \rightarrow$ applying a ΔD to x, is it still valid?
- Surrogate model: answers ↑
- Learn pairwise ΔD from the valid samples. Some ΔD are more common

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Test suite generation::adapting OSAP4

- 1. Samples \leftarrow (n = 100) valid items
- 2. $PF \leftarrow$ center of k-means clusters
- 3. Get the frequency of unique deltas among all pairs in Samples as the surrogate model
- 4. foreach $x \in \mathsf{PF}$
 - 4.1 pick one or more $[\Delta D]$, with high frequency ones in priority
 - 4.2 verify $x \oplus [\Delta D]$; fix by SAT solvers
 - 4.3 repeat from 5.1 or Goto 5
- 5. Collect all valid configurations, update Samples
- 6. Goto 2 or Terminate
- 7. Return all valid samples achieved

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Test suite generation::experiments

Benchmarks	Vars
blasted_case47	118
blasted_case110	287
s820a_7_4	616
s820a_15_7	685
s1238a_3_2	685
35.sk_3_52	4894
80.sk_2_48	4963
7.sk_4_50	6674
doublyLinkedList.sk_8_37	6889
19.sk_3_48	6984
29.sk_3_45	8857
isolateRightmost.sk_7_481	10024
LoginService2.sk_23_36	11510
sort.sk_8_52	12124
enqueueSeqSK.sk_10_42	16465
karatsuba.sk_7_41	19593
tutorial3.sk_4_31	486193

Research questions

- RQ1 can delta-oriented sampling (OSAP4) return a diverse test suite?
- RQ2 can OSAP4 return the test suite with less test cases?
- RQ3 is the sampling procedure fast?

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Test suite generation::RQ1 - got enough diversity?

- BLUE: OSAP4. RED: QuickSampler(STOA)
- NCD is the **diversity metrics** for this problem.
- Termination rule: NCD got improved by less than 5% within 10 minutes.
- Except in 2 benchmarks, OSAP4 achieved more than 95% of the diverse of STOA.

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 **Case study II: test suite generation** Summary of OSAP4

Test suite generation::RQ2 - less test cases?

Table: Number of unique cases in the test suite.

Benchmarks	OSAP4 O	QuickSampler Q	Q/O
blasted_case47	2799	71	0.00
blasted_case110	174	2386	13.71
s820a_7_4	37363	124457	3.30
80.sk_2_48	553	54440	98.44
doublyLinkedList.sk_8_37	178	12042	67.65
19.sk_3_48	104	200	1.90
29.sk_3_45	125	660	5.28
isolateRightmost.sk_7_481	15380	7510	0.49
7.sk_4_50	158	18090	114.49
doublyLinkedList.sk_8_37	178	12042	67.65
77.sk_3_44	145	33858	233.50
karatsuba.sk_7_41	39	4210	107.94
tutorial3.sk_4_31	236	2953	12.51

Observations

- Q/O is 91x (in average), 14x (in medium).
- That is, sharing the similar diverse, compared to QuickSampler's, running the test suites from OSAP4 can save > 90% testing times.

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

23.43

1675.66

1465.93

288.56

0.79

0.42

0.20

0.11

Test suite generation::RQ3 - sampling faster?

Model	OSAP4	QuickSampler	Speedup	
7.sk_4_50	2.47	1833.04	739.92	
17.sk_3_45	2.18	1503.44	687.05	
35.sk_3_52	1.85	966.40	520.44	
81.sk_5_51	2.06	421.63	204.13	
ProcessBean.sk_8_64	115.62	9296.81	80.40	
20.sk_1_51	32.63	2595.68	79.54	
LoginService2.sk_23_36	75.35	99.3716	1.32	

29.84

4031.86

7193.96

2605.32

Table: Termination time (sorted by speedup)

On average, it is 53X speedup.

19.sk_3_48

s832a 15 7

70.sk 3 40

isolateRightmost.sk 7 481

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Test suite generation::results

Summary

Comparing to the state-of-the-art QuickSampler, in majority benchmarks, the OSAP4

- finds test suite with similar diversity
- returns the test suite with much less cases
- terminates in much shorted time

OSAP4 - Delta-oriented surrogate model [ASE'19*] Case study I: revisit XOMO & POM3 Case study II: test suite generation Summary of OSAP4

Recap

Achievements of OSAP4

- No linearity dependence. Learning or transferring the deltas
- The learning model is not necessary to be accurate
- The initial sample size can be smaller than previous versions of OSAP

Limitations of OSAP4

- More model evaluations than previous versions (more uncertainty)
- Other surrogate model kernel (in addition to KNN, or the frequency) needs to be explored
- Local monotonic?

Reviewing OSAP Executive summary Future work

Roadmap

Early generations of OSAP

3) Delta-oriented surrogate model embedded OSAP

Conclusion and future work

- Reviewing OSAP
- Executive summary
- Future work

Reviewing OSAP Executive summary Future work

OSAP1

Reviewing OSAP Executive summary Future work

OSAP2

Reviewing OSAP Executive summary Future work

OSAP3

 $O_x^1 = O_p^1 - \frac{|D_p D_{x'}|}{|D_p D_{x'}|} (O_p^1 - O_q^1)$

Reviewing OSAP Executive summary Future work

OSAP4

OSAP generations

Gen	Assuming	Decision space	Objective space	Study cases	Constraint exists	Surrogate model
I	A "golden" region	numeric	numeric	XOMO POM3	×	×
П	n "golden" regions	boolean, discrete	numeric	SPL NRP	1	×
Ш	Linearity of the model	discrete	numeric	Workflow	×	1
IV	Local monotonic	numeric, discrete	numeric	XOMO POM3 Testing	1	1

Executive summary

- Try OSAP before the EVOL
- Always OSAP1 first. Simple, fast! Can use that as baseline method
- For the constraint model, which is not easy to get large amount of samples, OSAP4 could be helpful. (N samples can get $O(N^2)$ deltas)
- If the model is known to have some linearity features, OSAP3 is a good choice.
- "No free lunch theorem" ⁹. No simple optimizer is the best for all problems.

⁹Wolpert, et al. "No free lunch theorems for optimization." IEEE transactions on evolutionary computation 1.1 (1997): 67-82.

Future work

- Ensemble Learning random forest hyperparameter tuning •...
- Incremental Sampling regression testing dynamic cloud deployment •...
- More on the constraint models weighted sampling and counting¹⁰ Al applications•...
- Not just SBSE boosting stochastic gradient descent feature reduction •...

¹⁰ Chakraborty, Supratik, et al. "Distribution-aware sampling and weighted model counting for SAT." Twenty-Eighth AAAI Conference on Artificial Intelligence. 2014.

Questions?

Backup slides

XOMO and POM3::Metrics

How to measure the results? What is a good pareto frontier?

GS, GD: Less is better HV: Higher is better

Case study(review): Software Product Line

- Constrained model. Initial configurations given from SAT solver.
- Divided via the number of features \rightarrow small?, medium product? ...
- OSAP2 is effective, and fast, compared to [Henard'15] ¹¹

¹¹Henard, Christopher, et al. "Combining multi-objective search and constraint solving for configuring large software product lines." Software Engineering (ICSE), 2015

Case study(review): Next Release Problem

- Which requirements should be implemented for the next version?
- Subject to: customer satisfaction, budget, precedence constraints
- Objective: higher customer satisfaction + less development time + less cost

- Group (divide) the configurations via $WL(\mathbf{y}) = ||\{y_i < P/2\}||$
- i.e. how many features are scheduled in the first half of the plan
- Compared to the EVOL, OSAP2 was effective and fast.

Case study(review): Workflow deployment

- A workflow is the combination of sub computing tasks
- Expressed as directed acyclic graph (DAG)
- For each task, what's the best AWS EC2 instance?
- Two objectives to minimize
 - 1. Time to complete the whole workflow
 - 2. \$\$\$ spending
- More than 50 AWS EC2 types. (8 adopted in experiment)
- Experiment outputs:
 - (Efficiency) OSAP3 was 11 to 39 times faster than a state-of-the-art approach (EVOL based).
 - (Effectiveness) In the five largest workflows, OSAP3's results were better among 13/15 (87%) of all the quality indicators.